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Flight feather moult in small passerines is
realized in several ways. Some species moult
once after breeding or once on their wintering
grounds; others even moult twice. The adaptive
significance of this diversity is still largely
unknown. We compared the resistance to
mechanical fatigue of flight feathers from the
chiffchaff Phylloscopus collybita, a migratory
species moulting once on its breeding grounds,
with feathers from the willow warbler Phyllosco-
pus trochilus, a migratory species moulting in
both its breeding and wintering grounds. We
found that flight feathers of willow warblers,
which have a shaft with a comparatively large
diameter, become fatigued much faster than
feathers of chiffchaffs under an artificial cyclic
bending regime. We propose that willow war-
blers may strengthen their flight feathers by
increasing the diameter of the shaft, which may
lead to a more rapid accumulation of damage in
willow warblers than in chiffchaffs.

Keywords: moult; migration; mechanical fatigue;
biomechanics

1. INTRODUCTION
Unlike bones, feathers do not have the capacity for
self-repair. Feathers are constantly exposed to degrad-
ing agents, such as UV-B radiation (Bergman 1982;
Borgudd 2003), keratin-degrading bacteria (Burtt &
Ichida 1999) and mechanical fatigue. Hence, moult
has evolved into a major event in avian life histories.
Moult is costly in terms of energy and time ( Jenni &
Winkler 1994) and may be in conflict with other
activities (Nilsson & Svensson 1996). The number,
timing and intensity of moults are thus likely to be
under strong selection.

Small passerines moult all of their flight feathers at
least once a year. This renewal is realized in several
ways. Among Old World warblers, the majority of
species moult once at their summer quarters shortly
after breeding, whereas others moult in their winter
quarters (Svensson & Hedenström 1999). The willow
Received 22 June 2004
Accepted 6 September 2004 1
warbler even has a biannual flight feather moult
(Underhill et al. 1992)—once after breeding and
subsequently once more in its winter quarters.
The adaptive significance of these different strategies
is still largely unknown. An investigation of the
mechanical properties of feathers might provide us
with some insights into the proximate causes of such
differences. Material properties of feathers and
design constraints are only rarely explored (Bonser &
Purslow 1995; Bonser 1996; Corning & Biewener
1998) and rarely associated with the life-history
context of the species in question (but see Burtt
1986; Dawson et al. 2000).

Flight feathers have to be stiff, strong and light-
weight to serve as efficient aerofoils. One important
property of a flight feather, which may be regarded as
a beam, is bending stiffness. The tip deflection d of a
beam under load P is inversely proportional to
EI, bending stiffness. The term E is Young’s modulus
(stress divided by strain), and I is the second moment
of area (IZ

Ð
y2dA, where y is the distance of a cross-

sectional element A from the bending axis). Altering
E or I or both can thus change the stiffness of a
structure. For a circular hollow tube of constant
thickness, I is proportional to the cube of the
diameter.

Feather quality may be impaired by environmental
assaults and mechanical fatigue—small passerines
migrating from northern Europe to southern Africa
require approximately 40 million wing-beats to
complete the journey. The extent to which feathers
are damaged also depends on somatic investment.
Different moult strategies may therefore be a conse-
quence of (i) species-specific environmental factors
and (ii) differences in structural properties of feathers.

Here, we present preliminary data suggesting that
differences in the fatigue resistance of flight feather
shafts may be one correlate of different moult
strategies in two congeneric species.
2. MATERIAL AND METHODS
(a) Feather samples

Feathers without visible fault bars were collected between 5 May
and 22 May 2002 at Ottenby Bird Observatory (Öland, Sweden).
Only one innermost primary was taken from each individual.

(b) Fatigue apparatus

The apparatus used for simulating the cyclic bending of feathers
consisted of a 12 V motor. Attached to its axle was a circular
aluminium disc with four round horizontally oriented plastic bars.
Feathers were clamped to a ramp so that the moving bars deflected
the feathers downwards (figure 1a) with a bending frequency of
6.1 Hz.

(c) Mechanical testing equipment

We measured the feathers’ bending stiffness in a two-point bending
set-up in an MTS 810 testing machine (Eden Prairie, MN, USA;
figure 1b). Force was measured from the strain of a 2 mm thick
steel plate, which was attached to the upper fixed cylinder of the
machine. Feathers were fixed between two cable-clamps so that
they did not twist when loaded. To prevent damage, the clamps
were filled with silicon. The feathers were clamped up to the
calamus–rhachis border and fixed to the lower moving cylinder of
the machine.

(d) Experimental protocol

(i) Fatigue protocol
Feather stiffness was measured before the start of the fatigue
experiment, then after 5 h of fatigue and subsequently once after
each of nine separate 4 h sessions of fatigue. The feathers were
turned once halfway through each fatigue session.
q 2005 The Royal Society
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(a) Phylloscopus trochilus

(b) Phylloscopus collybita

Figure 2. Bending stiffness (P/d [N mmK1], i.e. external
load divided by displacement) as a function of fatigue
duration (h). (a) Willow warbler (Phylloscopus trochilus); (b)
chiffchaff (Phylloscopus collybita). Different symbols represent
individual feathers and lines are regression lines.

Figure 1. (a) The apparatus used for artificial cyclic
bending of feathers; (b) the testing set-up.
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(ii) Measurement of bending stiffness
The loading rate of the MTS testing machine was 2 mmminK1 and
force was recorded every 1.5 s for 3 min in total. The point of
bending was at 26 mm along the length of the rhachis. Stiffness was
calculated from the slope of the force–displacement output line
(see Electronic Appendix for more details).
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3. RESULTS
Figure 2a,b shows bending stiffness as a function
of fatigue duration. Willow warbler feathers were
stiffer (mean initial stiffnessGs.d.Z0.003 34G
0.000 974 N mmK1) than chiffchaff feathers (mean
initial stiffnessGs.d.Z0.001 82G0.000 47 N mmK1).
This difference was significant: tZK2.88, d.f.Z5,
pZ0.017. To test for differences between the two
species, we regressed stiffness against fatigue
duration for each feather and compared the slopes
using t-tests. The mean rate of loss of stiffness for
the willow warbler was 3.27!10K4 N mmK1 hK1

and it was 0.797!10K4 N mmK1 hK1 for the chiff-
chaff (tZ5.141 6, d.f.Z5, pZ0.0036).

The feather rhachis of willow warblers was thicker
than that of chiffchaffs. The mean dorsal–ventral
diameter (Gs.d.) at the point of clamping for willow
warblers (nZ3) was 0.83G0.058 mm and it was
0.69G0.063 mm for chiffchaffs (nZ4). This differ-
ence was significant: tZK3.135, d.f.Z5, pZ0.025.
Biol. Lett. (2005)
The mean dorsal–ventral diameter (Gs.d.) at the
point of bending was 0.47G0.029 mm for
willow warblers and 0.36G0.048 mm for chiffchaffs
(tZK3.3, d.f.Z5, pZ0.021). This pattern was
supported by data from a larger sample of feathers
collected at the same time and site (see above) and
used in different experiments (Borgudd 2003). In this
larger sample, the mean diameter at the point of
clamping (rhachis–calamus border) for willow
warblers was 0.81G0.042 mm and at the point of
testing, 0.43G0.032 mm (nZ13). The respective
values for chiffchaffs (nZ15) were 0.67G0.082 mm
and 0.37G0.041 mm. Each pair of mean values
differed significantly between the species.
4. DISCUSSION
Our results show that the innermost primaries of
willow warblers are affected more by fatigue than
the equivalent feathers of chiffchaffs. Thus, a sugges-
tive pattern emerges: the species with feathers that
fatigue faster moults twice annually and not once.
This is consistent with two explanations: either (i)
willow warblers have sufficient surplus energy and
time, can easily fit two moults into their annual
cycle and therefore do not have to invest much
energy and time in fatigue-resistant feathers, or (ii)
they suffer from time- and energy-stress during
summer or winter, or both, and are simply unable
to grow fatigue-resistant feathers. We believe the
first scenario to be unlikely—for example, northerly

http://rsbl.royalsocietypublishing.org/
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breeding willow warblers seem to suffer from an
increased likelihood of moult-migration overlap
(Hedenström et al. 1995), which may compromise
the quality of new feathers, and feathers that fatigue
rapidly may ultimately increase flight costs in the
course of long migratory flights. Although we do not
have unequivocal evidence to rule out either of the
two possible explanations, our data can still provide
us with interesting glimpses into the mechanisms of
feather fatigue and structure–performance relation-
ships. Our reasoning depends only on the sensible
assumption that birds need optimally stiff feathers
for efficient flight.

There are some potential problems with our
experiments, which need to be addressed. First, the
sample size was small. However, the results are
robust and the differences striking. Further support
comes from the results of an experiment in which
UV-B exposure and mechanical fatigue were alter-
nated (Borgudd 2003). During mechanical fatigue
sessions, chiffchaff feathers (nZ4) lost on average
1.2!10K5 N mmK1 hK1 and willow warbler feathers
(nZ4) 4.7!10K5 N mmK1 hK1 of bending stiffness.
These values are significantly different (tZ1.966,
d.f.Z6, pZ0.048). Second, neither the frequency
nor the amplitude of the artificial bending matches
the values expected during flight. However, as long
as the experimental conditions are the same for both
species, the results should mirror pertinent mechan-
ical differences. Third, and potentially most seriously,
the feathers were not of the same age. Because the
samples were collected in spring, willow warbler
feathers were relatively fresh, whereas chiffchaff
feathers had undergone one extra migratory episode
in the preceding autumn. This age difference, how-
ever, strengthens our case: although willow warbler
feathers were younger, their stiffness decreased faster
than the stiffness of the older chiffchaff feathers. The
age difference may be reflected in the initial stiffness
difference, not in the rate of stiffness loss.

The finding that rhachis diameter differs between
the two species gives us some insight into possible
structure–performance relationships. Assuming that
the rate of keratin synthesis during moult is constant
(Dawson 2003) and that feathers need to attain
a certain length and stiffness to minimize flight costs,
willow warblers may deposit less keratin per unit
feather length than chiffchaffs—either because they
do not need to do so or because they are not able to
do so. The resulting loss in elastic modulus may be
compensated for by increasing the second moment of
area I through depositing the material further from
the neutral line, which is neither in tension nor
compression (so that the bending stiffness EI remains
close to the optimal value). This, though, may result
in increased damage accumulation in the outer layers
of the feather, because strain during bending is
proportional to distance from the neutral line and
damage accumulation can be proportional to strain
amplitude during cyclic bending (Degrieck & van
Paepegem 2001). Fresh willow warbler feathers were
twice as stiff as the older chiffchaff feathers. How
can we support our claim that willow warblers may
Biol. Lett. (2005)
deposit keratin with a low elastic modulus?
Two considerations support this assumption: (i) fresh
chiffchaff feathers will most probably be stiffer than
the half-year-old feathers used in the experiment and
(ii) I is proportional to the third power of diameter.
The rhachis of willow warblers has, on average,
a 15% greater diameter than that of chiffchaffs, and
this difference may compensate for a large difference
in elastic modulus.

Investigations of the annual cycle and energy
budgets of the two species and analyses of feather
morphology and damage mechanisms in keratin are
needed to test our provisional results. It will also be
interesting to see whether birds can adjust rhachis
diameter in response to variations in material proper-
ties of keratin, and what such a response may imply
as regards fatigue properties—birds may have to
trade-off stiff feathers against increased damage
accumulation. Still to be investigated in detail are the
effects of mechanical fatigue on flight performance.
There are only a few experimental findings: Chai &
Dudley (1999) and Williams & Swaddle (2003)
showed that there are aerodynamic advantages
of having fresh plumage compared with visibly
undamaged, but old plumage.
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